A NEW LARGE AND COMMON SPECIES OF DORIS (GASTROPODA, NUDIBRANCHIA) FROM THE WESTERN INDIAN OCEAN

PATRICIA ORISTANIO V. LIMA1–3, YARA TIBIRIÇA2 & LUIZ RICARDO L. SIMONE3

1Instituto de Biociências da Universidade de São Paulo, Cx. Postal 42494: CEP04299–970 São Paulo, SP, Brazil
2University of Cádiz & SeaLife Research, Zavora Marine Lab., Inharrime, 1012, Praia de Zavora, Mozambique
3Museu de Zoologia da Universidade de São Paulo, Cx. Postal 42494: CEP04299–970 São Paulo, SP, Brazil

Abstract A new species of cryptobranch dorid nudibranch is described from the Western Indian Ocean. Doris ananas sp. nov. has previously been recorded from South Africa to Tanzania. The studied specimens were from the sub-tropical waters of southern Mozambique, from 10 to 40m deep and are frequently associated with yellow sponges. The new species is characterized by having several conical simple small tubercles surrounding each large tubercle. The integument is yellow and the top of the tubercles are pigmented in brown or black. This species distinguishes from other described taxa on both external and internal characteristics explored herein, mainly in the reproductive system, with the presence of two bags with internal spines annexed to the vagina. This conformation is described for the first time for cryptobranchs.

Key words Doris, Dorid, Nudibranchs, Mozambique, Western Indian Ocean

INTRODUCTION

The nudibranchs of the Western Indian Ocean are relatively poorly understood. Many species, even common and large ones, still remain undescribed or misidentified. The majority of nudibranch research in the region has been conducted in Tanzania (Eliot, 1902, 1903, 1904a–c, 1905), and South Africa (Barnard, 1927; Bergh, 1907; Fahey & Gosliner, 1999; Gosliner, 1987, 1994; MacNae, 1971), leaving a gap in Mozambique despite a few general marine invertebrate assessments (MacNae & Kalk, 1958, 1962; Martens, 1879).

The genus Doris is characterized by the dorsum covered by simple, rounded tubercles, stiffened by integumentary spicules, which do not protrude from the dorsal surface. A head with two lateral prolongations. An anterior border of the foot grooved but not notched. A labial cuticle lacking rodlets. A radula composed of simple, hammate teeth, and outermost teeth being simple or denticulate. A reproductive system with tubular, granular and simple prostate; penis and vagina devoid of hooks; and vestibular or accessory glands absent (Valdés, 2002).

The genus was described based on Doris verrucosa Linnaeus, 1758 from the Atlantic Ocean, the type species. Presently, it consists of 44 species of which 20 are from the Indo-Pacific region, six being unidentified species (Coleman, 2008; Bouchet & Gofas, 2014). Samples of the here introduced species, Doris ananas sp. nov., had been found in the Western Indian Ocean, particularly South Africa, Tanzania (Gosliner, 1987; Gosliner et al., 2011) and Mozambique (present study). Additional records in Madagascar, Mayotte and Seychelles Islands are found on-line (www.seaslugs.free.fr). The description includes anatomical information, which has been used in an ongoing wider comparative, phylogenetic study on the doridaceans.

MATERIAL AND METHODS

The examined material was hand-picked during SCUBA dives in Zavora and Ponta do Ouro, Southern Mozambique. The material was first stored at the A.C.C.M. – Zavora Marine Lab. and is currently deposited at the Museum of Kwazulu-Natal, Museu de Zoologia de São Paulo and Museu de História Natural de Maputo.

After collection, all specimens were individually photographed and notes were taken with all the data being entered in a database. The specimens were either relaxed in magnesium chloride 7% solution or by freezing. Shortly after this, they were transferred to formalin 4% (3 specimens), ethanol 70% (1 specimen) or ethanol 96% (5 specimens). Their dissections were performed under a stereomicroscope using standard techniques, with the specimens immersed in fixative.

Contact author : patylima84@gmail.com
Digital photos of each step of the dissection were obtained, as well as drawings aided by a camera lucida. The radula was removed and placed in 10% sodium hydroxide in order to isolate it from the soft tissue. A scanning electron microscope (SEM) was employed to view details of the radula in the Laboratório de Microscopia Eletrônica de Museu de Zoolologia da Universidade de São Paulo.

The following abbreviations are used in the figures: am: ampulla; au: auricle; at: aortic trunk; bc: bursa copulatrix; bg: blood gland; bm: buccal mass; bs: buccal sphencter; cb: buccal commissure; ce: cerebral ganglia; cg: connective buccal ganglia; cp: pedal commissure; cu: caecum; dd: duct of digestive gland; dg: digestive gland; es: esophagus; ey: eye; fg: female gland; ft: foot; gb: buccal ganglia; gc: gill circle; gf: gill filament; gg: gastroesophageal ganglia; gp: pedal ganglia; gr: rhinophoral ganglia; hd: hermaphrodite duct; in: intestine; mo: mouth; m2 – m10: odontophore muscles; mt: oral tube muscle; oc: odontophore cartilage; od: odontophore; ot: oral tube; ov: oviduct; pa: papilla; pc: pericardium; pe: penis; pl: pleural ganglia; pr: prostate; ra: radula; rc: renal chamber; ri: rhinophore; rm: retractor muscle gill; rp: reproductive system; rs: radular sac; rv: renal vesicle; sg: salivary gland; st: stomach; sn: nervous system; sr: seminal receptacle; ud: uterine duct; va: vagina; vd: vas deferent; ve: ventricle; vp: vaginal pouches; vv: auricoventricular valve.

Institutional Abbreviations
KZN – Museum of Kwazulu-Natal, South Africa.
MHN – Museu de História Natural de Maputo, Mozambique.
MZSP – Museu de Zoolologia da Universidade de São Paulo, São Paulo.

Systematics
Family Doridae Rafinesque, 1815
Doris Linnaeus, 1758

Type species *Doris verrucosa* Linnaeus, 1758

Doris ananas sp. nov.
(Figs 1–7)

Holotype MOZAMBIQUE, Inhambane, Inharrime, Zavora Beach, 24°31'S 35°12'E (Y. Tibiriça col., 06/v/2010, 30m depth), MZSP 111010.

Paratypes MOZAMBIQUE, Inhambane, Inharrime, Zavora Beach (Y. Tibiriça col.), MZSP 109879, 1 ex. (10/iii/2011, 12m depth); MZSP 109880, 1 ex. (10/iii/2011, 12m depth); MZSP 109882, 1 ex. (14/iii/2012, 18m depth); MZSP 109884, 1 ex. (10/viii/2012, 17m depth); MZSP 109885, 1 ex. (15/viii/2012, 17m depth); MZSP 109887, 1 ex. (06/iv/2010, 14m depth); NMSA L9730/T4025, 1 ex. (14/iii/2011, 16m depth); NMSA L9731/T4026, 1 ex. (09/viii/2011, 18m depth); NMSA L9732/T4027, 1 ex. (17/iii/2013).

Description
External morphology (Figs 1A–D; 3A; D; F) Size of fixed animal 16-31-50mm. Color uniform yellow with black tubercles. Body oval, elongated, dorsum covered by rounded tubercles, located mainly in median dorsal region; tubercles decreasing in size towards edge. Rhinophores...
chamber elliptical, color light yellow, with longitudinal folds, same size as ventricle. Renal chamber extending from dorsal to medial sinus, previously connected to renal vesicle, extending posteriorly to center of gill circle and opening in nephrostome papilla, next to base of anal papilla.

Digestive system (Figs 4A-B; 5A–D) Oral tube composed of outer lip, with pleats lengthwise; inner lip with transverse fold. Main oral tube muscle, \(m_t \), three pairs of retractor muscles of buccal mass, originating on oral tube, running dorsally and ventrally to oral tube, inserting on body side, about six times as wide and twice as long as \(m_{10} \). Odontophore oval, connected to oral tube by pair of ventral protractor muscles (\(m_{10} \)); thin longitudinal, dorsal and ventrolateral protractors of oral sphincter, originating in anterior region of odontophore, inserted in posterior region of integument, close to oral tube (Fig. 4A). Oral sphincter surrounding chitinous part of oral tube. Odontophore muscles: \(m_2 \), pair of strong retractor muscles of buccal mass, twice as long as wide, origin on anterior dorsal odontophore, running laterally to \(m_{4} \) and inserted ventrally on dorsal portion of foot; \(m_4 \), main pair of dorsal tensor muscles, strong and broad, \(1/3 \) as long as wide, almost completely covering cartilage of odontophore, inserted on ventral portion of subradular membrane; \(m_5 \), pair of dorsal auxiliary tensor muscles, twice as long as wide, originating mostly in posterior region of odontophore cartilages, covering \(1/3 \) of posterior cavity of odontophore, as long as, and with \(1/3 \) of \(m_4 \) width, inserting on ventral side of subradular membrane, around radular sac; \(m_6 \), unpaired horizontal muscle, with transverse fibers connecting to median surface of left and right odontophore cartilages, about same length and half as wide as \(m_4 \), posterior and anterior portion about same width as \(m_4 \) (Fig. 5D); \(m_7 \), pair of thin and short muscles, running parallel to dorsal portion, originated in posterior part of \(m_6 \) and inserting on radular sac (Fig. 5B). Pair of odontophore cartilages elliptical. Subradular membrane thin, strong, translucent. Radular sac \(1/3 \) of odontophore length (Fig. 5A). Radular teeth (Figs 2A–D): rachidian teeth absent; formula \(58 \times 50.0.50 \) (in 25mm long specimen). Each lateral tooth with broad base, tapering towards apex, hook-shaped, with single terminal cusp; outermost teeth thinner than internal teeth, inner base width about half of lateral teeth width, apex also hook-shaped, with single terminal cusp. Pair of salivary glands long, tubular (Fig. 4A); sponge-like, duct inserting in anterior region of esophagus, extending posteriorly to anterior region of digestive gland. Esophagus connected with odontophore, making fold up to nerve ring, running longitudinally until its connection with stomach (Fig. 4A). Stomach oval (Fig. 4B), with folds at entire inner surface; longitudinal pleats thicker posteriorly, close to anterior region of intestine. Intestine with longitudinal folds along

![Figure 4](image-url)
Figure 4 *Doris ananas* details of digestive system. **A.** Foregut, dorsal view, some adjacent structures also shown as in situ. **B.** Midgut as in situ, dorsal view. Scales: 1mm.
its entire length, diameter about half esophagus diameter, but more uniform. Caecum as elongated sac, located ventrally to stomach, opening in anterior portion of stomach, close to esophageal insertion, ~2/3 the length and ~1/3 the width of stomach; typically containing dark brown substance (Fig. 4B). Common opening for esophagus, stomach and caecum located on digestive gland. Digestive gland dark beige, cone-shaped, being largest organ of visceral mass, occupying ~30% of its volume; anterior portion about twice wider than posterior portion, inner face of gland sponge-like, bearing distinct main duct and various secondary ducts. Anus opening into anal papilla at center of gill circle, ~1/4 of gill filament length (Fig. 3F).

Genital system (Fig. 6A–E) Located between buccal mass and digestive gland, mainly on right-dorsal side. Gonad immersed into digestive gland, difficult to distinguish between them. Hermaphrodite duct thin, long. Ampulla located on female gland, elongated and tubular. Prostate tubular, granular, 2/3 of length of ampulla, narrowing in vas deferens, with about half of length of prostate, expanding up to penis (Fig. 6A). Penes’ muscle absent. Penis muscular, cylindrical and elongated, about half of length of prostate. Female gland well-developed, rounded, occupying ~20% of reproductive system volume, divided into mucus gland (~2/3 of female gland, color beige), and albumen gland (~1/3 of anterior most region, dilated, irregularly shaped, color dark brown) (Fig. 6E). Oviduct occupying ~1/4 of female gland volume. Uterine duct thin, relatively short, length ~1/6 of vagina length, located at base of vagina, inserted in female gland near oviduct. Seminal receptacle rounded, as large as bursa copulatrix, length ~1/3 of vagina length, connected to vagina near uterine duct through short stalk. Bursa copulatrix rounded, length ~1/3 of vagina length, connected to vagina after seminal receptacle, also through short stalk. Vagina cylindrical, elongated, approximately ~twice wider than penis, followed ventrally by prostate and located parallel to penis in genital opening. Pair of pyriform vaginal pouches ~1/2 of bursa copulatrix, one on each side of vaginal opening, internally with white mass and chitinous spine (Fig. 6C). Gonopore on right side, anterior quarter of length of animal from head, located between foot and notum.

Central nervous system (Fig. 3B; 4A; 7A–C) Located dorsally to odontophore, mostly covered by blood gland. Pair of cerebral and pleural ganglia fused with one another. Pedal ganglia fused with cerebral and pleural ventrally, but not fused among themselves. Pedal commissure simple, surrounding esophagus and salivary glands, same length as fused ganglia (cerebral, pleural and pedal) (Fig. 7A–B). Buccal ganglia short, located ventrally to odontophore, between
radular sac and anterior portion of esophagus, connected to cerebral ganglia through long and slender connective tissue, united to gastro-esophageal ganglia by short connective tissue. Gastro-esophageal ganglia length about ~1/3 of buccal ganglia length, circular (Fig. 7C). Rhinophoral (olfactory) ganglia bulb-shaped, connected to anterior portion of cerebral ganglia. Eyes dorsal, located on cerebral ganglia (Fig. 7A). Statocysts small and iridescent, located ventrally to pedal ganglia.

Etymology The name refers to the external similarity with a pineapple, one of the most common fruits in Mozambique. *Ananas* is the pineapple genus and it comes from the Tupi word *nanas* for the fruit.

Ecology Subtropical rocky reef, from 15 to 33 meters deep; throughout the whole year, with higher abundance in June, when the water temperature starts to drop from an average of 26°C to 24°C. Specimens are usually seen crawling on the reef, once, a specimen has been observed embedded in an unidentified yellow sponge with its gills retracted. Despite its large size, when embedded in the sponge, the species became well camouflaged and could be easily missed by divers. They are relatively common but have never been seen in great numbers, usually only one or two individuals at a time.

Discussion

The external and internal anatomy of the species described here is typical of the genus *Doris* (Valdés, 2002), with the exception of the two vaginal pouches, each one with a spine, located very close to the vaginal opening (Figs 6A, C). These vaginal pouches have never been recorded for the genus before.

Because of its originality, the terminology of vaginal pouches appears to be adequate. In the literature, there are two other denominations for genital accessory structures: accessory gland and vestibular gland (Valdés *et al.*, 2010). *Doris ananas* has the vaginal pouches positioned in the vaginal opening, and may have distinct functions different from those in the literature. Other species from different families may also have genital accessory structures. For example, *Geitodoris pusae* (Marcus, 1955) has a single pouch around the vagina without a spine, considered a vestibular gland (Marcus, 1955; Alvim & Pimenta, 2014); and, *Platydoris dierythros* Fahey & Valdés, 2003 has an accessory gland connected to the penial side (Fahey & Valdés, 2003).

Two genera of Dorididae have similar structure in the atrium with the vagina: *Goslineria* and *Pharodoris*, both from the West-Pacific deep water. *Pharodoris* has two large glands containing a long, bifid, rigid spine, however it has a characteristic elevated branchial sheath (Valdés, 2001) not present in *Doris ananas*. The only species belong to the genus *Goslineria*, *Goslineria callosa* has several large sacs in the atrium, each containing a long, simple and flexible spine (Valdés, 2001). A notable difference between *Doris* and *Goslineria* is the prostate, which is tubular in *Doris* and flattened in *Goslineria*.

Despite having armed appendices in the vagina in common, *D. ananas* does not appear to belong to the genera *Goslineria* or *Pharodoris* because of the quantity of further similarities with *D. verrucosa* and several differences from species of those genera (summarized in Table 1).

We decided to compare the new species with the type species *Doris verrucosa*, because its recent review provides more complete information of the anatomy (Lima & Simone, 2015). Furthermore, we compare the new species with the common Indo-Pacific species: *Doris granulosa* (Pease, 1860) and *Doris immonda* Risbec, 1928, based on literature data (Valdés, 2002).

D. ananas differs from *D. granulosa* and *D. immonda* in lacking lateral prolongations, with only one pore on each side of the mouth (Fig. 3A). It is interesting to note that *D. verrucosa* has the lateral prolongations on the mouth, which are well developed and with triangle-shaped and lateral groove on each one, while *D. granulosa* and *D. immonda* present blunt prolongation.

The penis’ muscles of *D. ananas* are absent, like in other species of *Doris*, such as *D. granulosa* and *D. immonda* (Marcus, 1955; Valdés, 2002; Camacho-García & Gosliner, 2008), further confirming the generic statement.
The blood gland of *D. ananas* seems to be divided with the posterior portion three time greater than the anterior one (Fig. 3B), as with *D. immonda*, while with *D. verrucosa* the blood gland is undivided and covers the whole nervous system. Normally, the species of the family Discodorididae have a divided blood gland (Dayrat, 2010).

Another striking difference of *D. ananas* is the presence of a papilla in the nephrostome (Fig. 3F), which does not appear in *D. verrucosa*, *D. granulosa* and *D. immonda*. The renal vesicle of *D. ananas* is as large as ventricle (Fig. 3B), while the ratio of vesicle/ventricle is normally ¼ the size of ventricle in *D. verrucosa*. The gill filaments of *D. ananas* are tripinnate (Fig. 3F), as well as *D. granulosa* and *D. immonda*, and not unipinnate as in *D. verrucosa*.

Despite of the geographic distance between *D. ananas* with the typo species *D. verrucosa*, as well as, anatomic differences with other known doridids, mainly in the genital organs, a conservative approach has been applied here in considering it in the genus *Doris*. However, a more complete taxonomic and molecular revision of the group might prove different.

Acknowledgements

We thank The Rufford Foundation for the financial support to conduct field research. We also give thanks to Lara Guimarães (Laboratório de Microscopia Eletrônica do Museu de Zoologia da USP – MZSP) for helping with the SEM examination. This work was supported by Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq) proc. 159446/2012–0.

REFERENCES

BERGHI R 1907 The Opisthobranchiata of South Africa. South African Philosophical Society, Cape Town.

