NOTES ON THE DIET OF THE ENDEMIC
RED-EARED PARAKEET *Pyrrhura hoematotis*
AND OTHER VENEZUELAN MONTANE PARROTS

NOTAS SOBRE LA DIETA DE LA ENDÉMICA
COTORRA COLIRROJA *Pyrrhura hoematotis*
Y OTROS LOROS MONTANOS DE VENEZUELA

Galo Buitrón-Jurado* and Virginia Sanz

SUMMARY.—Information on the diet of some species of tropical parrots is still scarce. We present data on the feeding ecology of the red-eared parakeet *Pyrrhura hoematotis*, an endemic and poorly known species of Venezuelan montane forests. Additionally, we describe other observations on the diet of the Venezuelan parakeet *Pyrrhura emma*, scarlet-fronted parakeet *Psittacara wagleri* and lilac-tailed parrotlet *Touit batavicus*. Red-eared parakeets used thirteen species of plants and their diet consisted principally of arillate seeds, but also included fleshy fruits and flowers. Tree species of Euphorbiaceae were main items in the diet of red-eared and scarlet-fronted parakeets. Leaves and resin of *Clusia alata* trees are reported for the first time in the diet of the lilac-tailed parrotlet. Our results add basic natural history data that can be useful for the conservation of these restricted distribution parrot species that are threatened by the habitat loss.

Key words: cloud forests, diet, Psittacidae, seed predators, South America, Yacambú National Park.

RESUMEN.—Información acerca de la dieta de algunas especies de loros tropicales es aún deficiente. Presentamos datos sobre la dieta de la cotorra colirroja *Pyrrhura hoematotis*, una especie endémica y poco conocida de los bosques montanos venezolanos. Adicionalmente, describimos otras observaciones sobre la dieta de la cotorra de Emma *Pyrrhura emma*, aratinga de Wagler *Psittacara wagleri* y cotorrita siete colores *Touit batavicus*. La cotorra colirroja utilizó trece especies de plantas y su dieta consistió principalmente en semillas ariladas, aunque también incluyó frutos carnosos y flores. Especies arbóreas de la familia Euphorbiaceae fueron los ítems principales tanto en la dieta de la cotorra colirroja como en la aratinga de Wagler. Las hojas y resina de árboles de *Clusia alata* son reportadas por primera vez en la dieta de la cotorrita siete colores. Nuestros resultados añaden datos básicos de historia natural que pueden ser útiles para la conservación de estas especies de loros que tienen una distribución restringida y están amenazados por la pérdida de hábitat.

Palabras clave: bosques nebulosos, depredadores de semillas, dieta, Parque Nacional Yacambú, Psittacidae, Sudamérica.

1 Laboratorio de Biología de Organismos, Centro de Ecología, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020-A, Apartado 2032, Venezuela.

* Corresponding author: galobuitronj@yahoo.es
INTRODUCTION

The natural history of many tropical parrot species is still poorly known, although this information is essential for their conservation (Mack and Wright, 1998; Botero-Delgadillo et al., 2010). Detailed data on habitats and diets of several tropical parrots are still needed to assess their vulnerability to habitat loss and global climatic change, especially for endemic species facing a greater risk of extinction related to the synergistic effects of narrow ecological niches and limited ranges (Walker, 2006; Slatyer et al., 2013). Diet data are also important to understand the parrots’ role in the functioning and persistence of ecosystems. Parrots form large feeding flocks and are important pre-dispersal seed predators, probably affecting the recruitment patterns of tropical tree species due to their high removal and consumption rates (Pizo et al., 1995; Villaseñor-Sánchez et al., 2010). Conversely, some parrot species pollinate several plant species (Vicentini and Fischer, 1999; Hingston et al., 2004).

Venezuela accommodates 47 native species of parrots, parakeets and macaws (BirdLife, 2014). The biology of many of these is poorly known, especially of those, such as the endemic red-eared parakeet *Pyrrhura hoematotis*, that inhabit humid montane forests. This parakeet inhabits montane forests from 600 to 2400 m.a.s.l., although it is found mainly between 1000 to 2000 m.a.s.l. (Hilty, 2003). Two subspecies are recognised on the basis of plumage coloration and geographic distribution. *P. h. hoematotis* is found along the western part of the Coastal Cordillera between Aragua and Miranda states, including Macarao, San Esteban and Henri Pittier national parks. *P. h. in-marginata* is only known from a very limited area on Cubiro, Lara State (Hilty, 2003; Restall et al., 2006; Juniper and Parr, 2010).

The red-eared parakeet is currently regarded as a ‘Least concern’ species in global and national red lists, despite the lack of data on diet and population size, and a probable recent decline due to habitat loss within its limited distributional range (Rodríguez and Rojas-Suárez, 2008; IUCN, 2014). Here we present data on the diet of this parakeet from Yacambú National Park, Venezuela. We also describe a few observations on habitats and diets of other scarcely known South American parrot species: the Venezuelan parakeet *Pyrrhura emma*, scarlet-fronted *Psittacara wagleri* parakeet and lilac-tailed parrotlet *Touit batavicus*, obtained in Yacambú National Park and in a montane forest remnant in Altos de Pipe, in the Venezuelan Coastal Cordillera.

MATERIAL AND METHODS

Study area

Observations were done at two montane forest sites in Venezuela. The first area was the montane forests around El Blanquito, within the Yacambú National Park (10° 24’ N 66° 55’ W, 1650 m) in the Andes, Lara State. Yacambú National Park covers ca. 27,000 ha and the climate is humid with a mean annual temperature of 20 °C and an estimated annual rainfall of over 2000 mm with two peaks, in May-July and in October (Goodwin and Lentino, 1990). Lower montane rainforests cover most of the park. It is considered an Important Bird Area (IBA) due to the species richness (255) and the presence of several threatened species such as the helmeted curassow *Pauxi pauxi*, wattled guan *Aburria aburri* and rusty-flanked rail *Laterallus levraudi* (Lentino and Esclasans, 2005).

The second site was an isolated forest fragment (300 ha) in Altos de Pipe (10° 24’ N 66° 55’ W, 1600 m), a summit of an internal branch of the Coastal Cordillera, Miranda State. The climate is humid and rainy with an annual rainfall of 1063 mm and a mean
annual temperature of 17 °C; the site is covered by mist during several months of the year (Casañas and Jauregui, 2011). The vegetation is also classified as lower montane rainforest, although a variety of habitats are found due to the different successional stages of the vegetation resulting from the past 50 years of land conversion.

Field surveys

Observations were performed in five 1-ha plots in mature and old secondary forests within both survey sites, at elevations ranging from 1500 to 1700 m. We observed the parrots during eleven surveys of eight days each, nine carried out monthly from January to October 2011. Two additional surveys were done in Yacambú in November 2010 and February 2012. Parrot observations were performed in the morning from 06:30 to 12:00, and in the afternoon, from 15:00 to 17:00, avoiding heavy rain or mist, yielding a total of 280 sampling hours in each study area. Parrots were located using visual and aural clues in both study areas. Basic data such as date, time, flock size, habitat, and behaviour were recorded for each encounter. When parrots were observed foraging, we also recorded the plant species and part eaten (i.e. fruit pulp, seeds, or flowers), foraging height and technique (gleaning, reaching, and hanging) (Galetti, 1997; Kristoch and Marcondes-Machado, 2001). A feeding bout was defined as an observation of one or more individuals feeding on a food source (Renton, 2006). In the latter case, the behaviour was recorded for a single, randomly chosen individual and was assumed to be representative of the entire flock, to avoid problems related to lack of independence of sequential observations (Renton, 2006; Walker, 2006). If the birds moved to another plant and started feeding, this was considered as a new feeding bout (Kristoch and Marcondes-Machado, 2001). The number of fruits removed either by swallowing or carrying away by a single individual during each observation was used to determine the removal rate. The diameter of the smallest and largest axis (measured with calipers to the nearest mm) of a sample of at least five fruits and seeds of the plant species consumed was recorded in the field to determine the size range of items consumed. Specimens of food plants were collected and identified by comparison with samples in the National Herbarium of Venezuela. These data permitted us to calculate the overall dietary breadth for red-eared parakeets using the standardised Levins niche breadth index (Levins, 1968), where values close to zero indicate dietary specialisation and values close to one indicate a broad diet (Krebs, 1999). The index was not calculated for the other three species since too few records were obtained.

Phenological data on the presence and absence of fleshy fruits of 42 tree species in Yacambú were available as part of a concomitant study of frugivorous birds in both areas (Buitrón-Jurado, 2012). Fruit-bearing trees ≥ 10 cm in diameter at breast height (DBH) were registered within each 1-ha plot and recorded as an edible source when any frugivorous birds were observed eating them. Data on the fruit crops of two tree species, Cecropia angustifolia and Tetrorchidium rubrivenium were also recorded. Ten mature trees of both species with a trunk diameter greater than 10 cm were monitored for nine months to determine the number and ripeness of fruits. To visually estimate the number of fruits in a tree, fruits were counted on ten branches and the total number of fruiting branches was counted for each tree to calculate the total number of fruits on each individual (Chapman et al., 1992). These data were used to explore whether monthly parrot abundance was related to fruit availability, using Spearman rank correlations. Data are shown as means ± S. E.
Fig. 1.—A) Monthly number of sightings (means ± S. E.) of red-eared parakeets *Pyrrhura hoematotis*; B) Number of fruiting tree species; C) Crop size of ten trees *Tetrorchidium rubrivenium* (black) and *Cecropia angustifolia* (grey) during 2011 in El Blanquito, Yacambú National Park, Venezuela.

[A) Número de observaciones mensuales (media ± S. E.) de la cotorra colirroja Pyrrhura hoematotis; B) número de especies de árboles con frutos; C) tamaño de la cosecha de frutos de 10 árboles de Tetrorchidium rubrivenium (negro) y Cecropia angustifolia (gris) durante el año 2011 en El Blanquito, Parque Nacional Yacambú, Venezuela.]
RESULTS

Red-eared parakeet

Flock size and habitat. Red-eared parakeets were observed only in the Yacambú National Park during all surveys, although they were more frequently recorded in May, June, and September (fig. 1A). Parakeets were generally observed flying or perching during the early morning in flocks of 1-25 individuals (4 ± 0.6, N = 50). Flocks flew fast and generally close to the forest canopy. At midday, groups were observed resting in the canopy of tall trees. Most records (n = 28) were obtained in tall secondary forest dominated by trees of Myrcia acuminata, Alchornea triplinervia and the exotic Eucalyptus, in plots at low altitude in our survey area. In this area, we observed also a pair copulating for a few seconds in June 2011. Parakeets were also observed (N = 25) on the edges of tall mature forests at 1700 m, these dominated by tree species such as Pouteria baehniana, Cecropia angustifolia, Calatola costaricensis and the palm Wettinia praemorsa.

Diet. We observed 23 feeding bouts (90 individuals). Red-eared parakeets foraged in the sub-canopy (12 ± 0.8 m, N = 22) and they fed on thirteen plant species from nine families during the study period (table 1). The main items consumed, based on the number of feeding bouts, were arillate seeds of Euphorbiaceae, from mature fruits of Tetrorchidium rubrivenium and Alchornea triplinervia, and immature fruits of Sapium stylare. Capsules of these tree species were less than 10 mm in diameter and contained one to three arillate seeds that turned red when ripe. Other items eaten were seeds of Croton gossypifolius (Euphorbiaceae), flowers of Erythrina and Ocotea, and fleshy fruits of Geonoma undata (Arecaceae), Cecropia angustifolia (Urticaceae) and Guettarda crispiflora (Rubiaceae). Red-eared parakeets also included Inga oerstediana pods in their diet; a group of three was observed consuming these fruits on November 2010. Levins’ niche breadth value was 0.65, and the fruit removal rate varied according to food plant, ranging from 2 to 24 items min⁻¹ (9.7 ± 2.4, N = 23) (table 1). The sizes of the consumed items ranged from 1.6 to 9.6 mm (7.5 ± 0.5, N = 20). Foraging behaviour included gleaning and acrobatic techniques such as hanging down or reaching out to fruits. Parakeets also took fruits with the foot and bit off pieces, on two occasions.

Parakeet abundance and fruit availability. Most tree species were observed carrying fruits in April, May, and August in Yacambú, including almost all the species consumed by the red-eared parakeet, with the exception of Helicarpus americanus, which was observed with dry indehiscent fruits in March. Nevertheless, we found no association between the number of tree species carrying fruits (figure 1B) and the number of parakeets (rₛ = 0.06, N = 10, P = 0.8). Neither was there an association between parakeet abundance and the number of fruits of Cecropia angustifolia (rₛ = –0.46, N = 9, P = 0.21) nor Tetrorchidium rubrivenium (r = 0.45, N= 9, P = 0.2). The fruit abundance of both tree species is showed in fig. 1C.

Venezuelan parakeet

We obtained three records of this species, all in Altos de Pipe where it seems to be scarce. The first was on 20 February 2011: a group of three individuals were observed perched at the top of a tree of Clethra lanata (Clethraceae) during the morning. A group of three individuals was also recorded on 23 March 2011 resting on branches of a tree of Alchornea triplinervia. Finally, four individuals were observed at 20 m at the top of a tree of Eschweilera tenax (Lecythidaceae) on 17 June 2011. All our observations were
Table 1

Food plants and frequency of consume by the red-eared parakeet *Pyrrhura hoematotis* in Yacambú National Park, Venezuela. Data on removal rates are shown as means ± S. E.

<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
<th>Plant part eaten</th>
<th>Feeding bouts</th>
<th>Number of parakeets</th>
<th>Removal Rate fruits min⁻¹</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arecaceae</td>
<td>Geonoma undata</td>
<td>Fruits</td>
<td>1</td>
<td>4</td>
<td>1.8</td>
<td>Jul 2011</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Piptocoma sp.</td>
<td>Seeds</td>
<td>1</td>
<td>7</td>
<td>13.0</td>
<td>Apr 2011</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Alchornea triplinervia</td>
<td>Seeds</td>
<td>3</td>
<td>9</td>
<td>23.7 ± 9</td>
<td>Mar, Apr 2011</td>
</tr>
<tr>
<td></td>
<td>Croton gossypiifolius</td>
<td>Seeds</td>
<td>1</td>
<td>20</td>
<td>3.4</td>
<td>May 2011</td>
</tr>
<tr>
<td></td>
<td>Sapium stylare</td>
<td>Seeds</td>
<td>1</td>
<td>5</td>
<td>12.1</td>
<td>Oct 2011</td>
</tr>
<tr>
<td></td>
<td>Tetrorchidium rubrivenium</td>
<td>Seeds</td>
<td>7</td>
<td>13</td>
<td>4.4 ± 1</td>
<td>Nov 2010, Jun, Jul 2011</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>Erythrina poepiggiana</td>
<td>Flowers</td>
<td>1</td>
<td>5</td>
<td>3.8</td>
<td>Feb 2012</td>
</tr>
<tr>
<td></td>
<td>Inga oerstediana</td>
<td>Pods</td>
<td>1</td>
<td>3</td>
<td></td>
<td>Nov 2010</td>
</tr>
<tr>
<td>Lauraceae</td>
<td>Ocotea sp.</td>
<td>Flowers</td>
<td>1</td>
<td>7</td>
<td>22.6</td>
<td>Feb 2011</td>
</tr>
<tr>
<td>Malvaceae</td>
<td>Heliocarpus americanus</td>
<td>Seeds</td>
<td>2</td>
<td>2</td>
<td>11.4</td>
<td>March 2011</td>
</tr>
<tr>
<td>Myrtaceae</td>
<td>Eucalyptus citridora</td>
<td>Capsules</td>
<td>1</td>
<td>3</td>
<td>2.5</td>
<td>Sep 2011</td>
</tr>
<tr>
<td>Rubiaceae</td>
<td>Guettarda crispiflora</td>
<td>Fruits</td>
<td>2</td>
<td>8</td>
<td>4.2</td>
<td>Nov 2010, Sep 2011</td>
</tr>
<tr>
<td>Urticaceae</td>
<td>Cecropia angustifolia</td>
<td>Fruits</td>
<td>1</td>
<td>4</td>
<td>8.0</td>
<td>June 2011</td>
</tr>
</tbody>
</table>

| | 23 | 90 | 9.7 ± 2.4 |
made in mature forest where common tree species included *Nectandra laurel* (Lauraceae), *Matayba longipes* (Celastraceae), *Graffenrieda latifolia* (Melastomataceae) and the palm *Weitinia praemorsa* (Arecales). A single feeding bout was recorded on 17 June 2011 when one parakeet consumed the ripe fruits of *Cecropia angustifolia*, 10 m up in the crown.

Scarlet-fronted parakeet

The scarlet-fronted parakeet was only recorded in Yacambú where it seemed to be a seasonal visitant. Flocks of 3-50 individuals (15 ± 3.3, N = 13) were observed, first in November 2010 and between September to November 2011 at 1700 m. Their presence coincided with the fruiting of species of Euphorbiaceae such as *Sapium stylare* and *Tetrochidium rubrivenium*. These flocks remained perched and feeding for 10 to 30 minutes in emergent trees of *Sapium stylare*. The forest was tall, as described for the red-eared parakeet.

We observed 16 feeding bouts (129 individuals) in Yacambú only, all of them on immature fruits of *Sapium stylare*. During feeding, birds were noisily cracking fruits and giving frequent calls that can be described as “kleea, kleea, kleeaa” (record XC131795, available at http://www.xeno-canto.org). The parakeets took the capsules directly from the branches (90 %), although some hanging manoeuvres were also observed. Fruit removal rates ranged from 2 to 11 fruits min⁻¹ (7 ± 0.7, N = 16).

Lilac-tailed parrotlet

This species was only recorded in Altos de Pipe, where we observed a single group. Six individuals were observed on 7 October 2010 at 07:45 hrs on the margin of secondary forest while feeding among the lower branches (3-5 m up) in a tree of *Clusia alata* (Clusiaceae; 5 m high, 19.4 cm diameter). Their foraging behaviour was remarkable because at least three individuals consumed the sap of the tree. They scratched the green twigs of the branch-tips to remove the bark gently, especially at the base of fresh young leaves, from where they licked the emerging sap. One of the individuals also broke a leaf petiole and ate the lamina. A young bud was eaten by another bird, which responded aggressively to another approaching individual. The birds remained silent while feeding, holding on to the branches with both feet while pecking at the leaf bases from below. The group chewed and broke four leaves during the thirty minutes that they remained perched in the tree. Three individuals moved to eat the young capsules of a neighbouring *Clusia* tree and remained there for another five minutes before flying away.

Our study provides information on the habitat and foraging ecology of four tropical parrot species and is the first detailed study of the diet of the endemic red-eared parakeet. Previous accounts of the ecology of the red-eared parakeet indicate that it inhabits tall mature forests in Rancho Grande in the Venezuelan Coastal Cordillera, where flocks are seen all year round close to the canopy and in the forest edges (Lentino and Portas, 1994). Our findings accord with these previous observations, since red-eared parakeets were observed in tall mature and secondary forests. Nevertheless, the tree species composition in Yacambú differs and the vegetation is of lesser stature than the montane forests in Rancho Grande (GBJ pers. obs.).

To date, only fleshy fruits of *Psidium sp.* (Myrtaceae) had been recorded as consumed by the red-eared parakeet (Fernández-Badillo et al., 1994, GBJ pers. obs.). We found, however, that the red-eared parakeet fed on a diversity of food resources, including the fleshy fruits, flowers, and seeds of several tree species, as do other *Pyrrhura* species (Toyne et al., 1992; Ragusa-Netto,
The diet of red-eared parakeets included tree genera with fleshy fruits such as *Cecropia* as well as tree species producing large crops of arillate seeds, such as *Alchornea triplinervia*, *Sapium stylare* and *Tetrochidium rubriventer*. These food items have been recorded previously in the diet of other Andean *Pyrrhura* species, including the white-breasted *P. albipectus* and the rose-fronted *P. rhodocephala* parakeets (Toyne, 1992; Aguilar, 1996). Nevertheless, none of the Andean species have been reported consuming palm fruits, as does the red-eared parakeet (Toyne, 1992; Aguilar, 1996; Botero-Delgadillo et al., 2010, 2013).

The dietary breadth of the *inmarginata* form of the red-eared parakeet was similar to values reported with comparable sampling efforts for other restricted-range Neotropical parakeets, such as the Santa Marta *P. viridicata* and Todd’s *P. caeruleiceps* parakeets (Botero-Delgadillo et al., 2010, 2013). The same applies to the scarlet-fronted parakeet whose diet has been reported to include flowers, fruits and seeds, especially maize (Juniper and Parr, 2010). It has been observed eating guavas *Psidium guajaba* and *Erythrina fusca* in Colombia (Rodríguez-Mahecha and Hernández Camacho, 2002).

Our observation on the diet of the scarlet-fronted parakeet in Yacambú showed a heavy consumption of immature and mature fruits of *Sapium stylare*. *Touit* species are among the least known parrots in South America. Data on the diet of the lilac-tailed parrotlet and blue-fronted parrotlet *Touit dilectissima* indicate the consumption of *Clusia* fruits in Colombia and Ecuador, respectively (Troncoso et al., 1995; Olaciregui and Ureña, 2011; Liu and Lyons, 2012). Our observation corroborated the use of *Clusiaceae* by the lilac-tailed parrotlet, and shows that *Clusia* trees also could provide additional feeding resources to these parrotlets such as sap, flowers and leaves. All these resources are consumed by only a few Neotropical parrot species. Nectar has been recorded in the diet of the golden-winged *Brotogeris chrysopterus*, yellow-chevroned *B. chiriri* and white-eyed parakeets *Psittacara leucophtalmus* and the green-thighed parrot *Pionites leucogaster* (Vicentini and Fischer, 1999). Sap has been previously recorded in the diet of the military macaw *Ara militaris* which also includes leaves, as the diets of the reddish-bellied and Todd’s parakeets (Pizo et al., 1995; Kristoch and Marcondes-Machado, 2001; Contreras-González et al., 2009). Further studies are needed, however, to corroborate if the consumption of sap, a particular reward for pollinators in *Clusia* species (Martins et al., 2007), and leaves is frequent among *Touit* parrotlets.
The considerable use of arillate fruits of Euphorbiaceae and Clusiaceae among our parrot species is probably related to the greater nutritional value of such fruits relative to fleshy and juicy fruits, which are richer in carbohydrates and water but poorer in protein and fat (Galetti et al., 2000; Giliardi and Toft, 2012). Our observations of the feeding ecology of the four parrot species also suggest that they act as pre-dispersal seed predators as do other Psittacidae (Pizo et al., 1995; Villaseñor-Sánchez et al., 2010). All four species included seeds in their diets, some of them obtained from immature fruits. Nevertheless, the red-eared and Venezuelan parakeets could in addition act as endozoochorous seed dispersers for small-seeded tree species such as *Cecropia angustifolia* and *Guettarda crispiflora*, or may disperse them by epizoochory (Tella et al., 2015).

It has been suggested that the limited areas of occupancy of some endemic bird species in Venezuela are related to specific habitats or to resources available in montane areas near the coast (Boesman, 1998). The abundance of tree species with arillate seeds and heavy fruit crops, such as *Sapium stylare*, *Alchornea triplinervia* and *Tetrorchidium rubrivenium*, could be a factor influencing the distribution or movements of the scarlet-fronted parakeet in a similar manner to that seen in other South American parrots that are known to wander over large areas seeking patches of abundant and ephemeral feeding resources (Galetti, 1997; Renton, 2001; Ragusa-Netto, 2004). In Yacambú, our data indicated also that sympatric species of parakeets, such as the red-eared and scarlet fronted parakeets, may show different responses to fruit availability. Further studies of the relationship between feeding resource availability and the seasonal movements of Venezuelan parakeets are needed to elucidate their vulnerability to habitat loss.

Red-eared and Venezuelan parakeets are considered ‘Least concern’ species even though knowledge about their habitats, breeding requirements and populations is deficient. These species may be at greater extinction risk than the scarlet-fronted parakeet, which has been recently uplisted to ‘Near-threatened’ (IUCN, 2014). The two endemic species of *Pyrrhura* parakeets occur in mature montane forests, although they have a more restricted area of occupancy than the scarlet-fronted parakeet and are less abundant than in the past when flocks of 100 individuals were recorded (Fernández-Badillo et al., 1994). Red-eared and Venezuelan parakeets face important conservation issues due to habitat loss. They require urgent population assessments to determine their extinction risk, especially the red-eared parakeet which seems to be less tolerant of habitat fragmentation and was not recorded in Altos de Pipe. Further field efforts should focus on assessing the population sizes of parrots within Yacambú National Park and the importance of other feeding resources (e.g. dry seeds) on their abundance, as well as on confirming the presence of red-eared parakeets in nearby national parks that harbour montane forests, such as El Guache and Terepaima.

Acknowledgements.—We would like to thank to Maira Mendez and the Regional Direction of INPARQUES Lara for permission to work in Yacambú National Park. Valuable field assistance was provided by Leonardo Alvarado and Vilisa Morón. We are also grateful to Leyda Rodríguez and José Grande of the Venezuelan National Herbarium (VEN) and Angel Fernández (IVIC) for helping us with the identification of plant species. Our thanks also to María L. González for sharing observations and Ana Contreras-González who provided helpful comments, as well as to two anonymous referees who commented on early versions of the manuscript. Fieldwork was supported by IDEAWILD, The Rufford Small Grant Foundation (no. 9163-1) and IVIC. Our research was authorised by the Ministerio del Poder Popular para el Ambiente de Venezuela (Permit No. I-176).
BIBLIOGRAPHY

LENTINO, M. and ESCLASANS, D. 2005. Áreas Importantes para la Conservación de las Aves en...
Diet of Venezuelan Montane Parakeets

Received: 12 August 2015
Accepted: 06 April 2016

Editors: Rowan Martin and José Luis Tella