A FIRST EPIGEAN SPECIES OF STYGOPHYRUS KRAEPELIN
(AMBLYPYGI: CHARONTIDAE) FROM JAVA AND ADJACENT
ISLANDS, INDONESIA WITH NOTES ON S. DAMMERMANI ROEWER, 1928

Cahyo Rahmadi
Museum Zoologicum Bogoriense, Research Center for Biology LIPI,
Widyasatwaloka Building, Jl. Raya Jakarta-Bogor Km. 46 Cibinong 16911, Indonesia
Email: cahyo.rahmadi@gmail.com (Corresponding author)

Mark S. Harvey
Department of Terrestrial Invertebrates, Western Australian Museum,
Locked Bag 49, Weldon PO, Western Australia 6906, Australia.
Email: mark.harvey@museum.wa.gov.au

ABSTRACT. – Stygophrynus sunda, new species, is described from Ujung Kulon National Park, Banten and adjacent island in the Sunda Strait based on male and female specimens. The only previously known species from the Sunda region, Stygophrynus dammermani Roewer, 1928, is reviewed and discussed with the new illustrations and diagnostic characters. The distribution of S. dammermani is found across western Java up to central part of Java and the Krakatau Islands. The distribution of S. sunda is recently only found in southern Sumatra and far-western Java.

KEYWORDS. – Taxonomy, morphology, Asia, biodiversity.

INTRODUCTION
The amblypygid genus Stygophrynus was first proposed by Kraepelin (1895) for Charon cavernicola Thorell, 1889, from Burma. Since then, seven additional species have been added to the genus, including S. cerberus Simon, 1901, from Burma, S. brevispina Weygoldt, 2002 from Thailand, S. longispina Gravely, 1915 and S. berkeleyi Gravely, 1915, from Malaysia, S. moultoni Gravely, 1915, and S. dammermani Roewer, 1928, from Indonesia, and S. forsteri Dunn, 1949, from the Solomon Islands.

The Indonesian species of Stygophrynus are poorly known. The first to be reported was S. moultoni based on a single male specimen collected from the summit of Klingkang Range in West Kalimantan. This species was subsequently reported from Sebesi Island situated in the Sunda Strait by Quintero (1986). The second was S. dammermani, from caves in western Java (Roewer, 1928). Whilst identifying specimens collected in a variety of locations in the Sunda region of Indonesia, an additional species was identified. The purpose of this paper is to describe the new species and provide new illustrations and a new diagnosis for S. dammermani.

MATERIALS AND METHODS
The specimens examined during the course of this study are deposited in the following institutions: Museum Zoologicum Bogoriense, Indonesia (MZB), the Western Australian Museum, Perth, Australia (WAM) and the Zoological Reference Collection, National University Singapore, Singapore (ZRC). The general terminology and the pedipalpal spination follow Weygoldt (2000) and the pedipalpal terminology follows Harvey & West (1998). The measurements were made with a standard ocular grid fitted within a binocular Olympus microscope and follow the system deployed by Quintero (1981). The genitalia were examined by lifting the genital operculum.

TAXONOMY
CHARONTIDAE Simon, 1892
Stygophrynus Kraepelin, 1895
Rahmadi & Harvey: Stygophrynus from Java and adjacent islands

Type species. – Charon cavernicola Thorell, 1889, by original designation.

Diagnosis. – Principally having three or two major spines on the dorsal surface of the pedipalpal patella, a divided pedipalpal tarsus and at least three spinelets on the pedipalpal tibia both dorsally and ventrally (Kraepelin, 1895; Gravely, 1915; Dunn, 1949; Weygoldt, 2000).

Remarks. – Stygophrynus is a member of Charontidae which is characterized by the presence of a row of setae on the proximal edge of the cleaning organ on the pedipalpal tibia (Quintero, 1986; Harvey & West, 1998; Weygoldt, 1996, 2002). The only other genus of the family, Charon Karsch, 1879, is distinguished from Stygophrynus by the presence of only two major spines on the pedipalpal patella and an undivided pedipalpal tarsus (Harvey & West, 1998; Weygoldt, 2000). Dunn (1949) proposed the subgenus Stygophrynus (Neocharon) to accommodate S. moultoni from Kalimantan and S. forsteri from the Solomon Islands.

Stygophrynus sunda, new species
(Figs. 1, 3–12)

Paratypes. – INDONESIA: Banten: 1 female (MZB. Ambl. 110), 4 juveniles (MZB. Ambl. 111–114), same locality data as holotype; 1 male (MZB. Ambl.021), 2 females (MZB. Ambl.022–023) (1 female with an egg sac on ventral abdomen) and 1 juvenile (MZB. Ambl. 023), Ujung Kulon, Ujung Kulon National Park, coll. Team Oxford (Christopher Stewart), Aug. 1993; 7 females (MZB. Ambl. 025–031), Pulau Legundi (no specific location, presumably located on Lampung Bay), coll. unknown, 21 May 1955.

Specimens for comparison. – 1 male and 1 female Stygophrynus berkeleyi (ZRC.ARA.529: 2 ex.) MALAYSIA: Kedah, Baling, Limestone cave. coll. H. D. Collings. Apr.–May 1935. Identified by E.A.M. Speijer. All specimens of Stygophrynus dammermani.

Diagnosis. – Can be easily distinguished from other species of the genus by the following combination of characters: two teeth on the external face of the basal cheliceral segment; six teeth on the movable finger with the 2 dorsalmost teeth about equal in size, the remaining teeth decreasing in size distally; the dorsal surface of the chelicera roughened with small denticles.

Description. – Male holotype: Colour of living holotype specimens: carapace, pedipalpal femur dark black, pedipalpal tibia and tarsi reddish, pedal tibiae reddish, abdominal tergites greenish; colour in alcohol: carapace, pedipalps and legs brown; tergites yellowish-brown; femur of legs without annulations. All setae acicular.

Carapace (Fig. 1): anterior margin nearly straight, with 12 setiferous tubercles, eye tubercle black, eye tubercle black, large and high with two setiferous tubercles on dorsal surface, eyes slightly directed to anterolateral margin, surface with numerous small tubercles lacking setae especially on frontal margin, several setiferous tubercles, central sulcus deep and radiating; frontal process triangular, tip visible from above.

Figs. 1–2. Stygophrynus from Java: 1, Male holotype of Stygophrynus sunda new species collected from Ujung Kulon National Park. 2, Stygophrynus dammermani, female from Bunaiyu Cave (MZB. Ambl.118). (Photo. C. Rahmadi). Scale bars: 1 = 4 mm; 2 = 7 mm.
Figs. 3–12. *Stygophrynus sonda*, paratype male (MZB.Ambl.021): 3, left chelicera, internal view; 4, left chelicera, external view. Holotype male (MZB.Ambl.109): 5, left pedipalp, dorsal view; 6, left pedipalp, ventral view; 7, left pedipalpal tibia; 8, left leg IV showing trichobothria; 9, left leg IV, tarsal segments; 10, male genitalia, ventral view; 11, male genitalia, dorsal view. Paratype female (MZB.Ambl.022): 12, female genitalia. Scale bars = 1mm.
Chelicera (Figs. 3–4): dorsal surface with 7 large and 7 small setiferous tubercles; antero-dorsal surface of basal segment with 2 setiferous tubercles on outer margin and 1 setiferous tubercle on inner margin, basal segment with 4 teeth on internal margin (Fig. 3), the upper-most tooth bicuspid, with lower cusp larger than upper cusp, the lower-most the largest, external margin with 2 teeth on common base (Fig. 4), movable finger with 6 teeth, the 2 proximal teeth about equal in size, teeth 3 to 6 decreasing in size distally.

Sternum: anterior sternite of tritosternum elongate, median and posterior sternites rounded; anterior sternite with 2 apical setae and 2 intermediate setae; median sternite with 3 small setae and 2 large setae, posterior sternite with 2 large setae.

Pedipalp (Figs. 5–6): trochanter with 8 spines and 11 setiferous tubercles on anterodorsal margin, spines with basal setae, with 7 anteroventral spines, and many setiferous tubercles; femur with 4 major spines and many small denticles on anterodorsal margin, F3 the longest, F3 > F2 > F4 > F1, 1 small spine between F1–F2, F2–F3 and F3–F4 (Fig. 5), 4 major spines and 4 small spines on anteroventral margin, FIII > FII > F1 > FIV, with several small spines between F1 and distal margin, 1 small spine between F1–FII, FIII and FIV situated close together on proximal margin (Fig. 6); patella with 3 major spines about equal size and 2 small spines on anterodorsal margin, with 2 small spines between P1 and distal margin, with 1 small spine between P1–P2 and P4–P5, and with 3 small spines between P5 and proximal margin (Fig. 5); with 5 major spines and 6 small spines on anteroventral margin, PIII > PIV > PV > P1 > PII (Fig. 6); tibia with 1 large submedial spine on anterodorsal margin, which has a subsidiary basal spine, with 3 contiguous spinelets on distal margin, the most distal the largest, this 3 small spinelets decreasing in size proximally, anteroventral margin with 1 large submedial spine and, with 4 spinelets distal ones (the most distal largest and three other decreasing in size proximally); tarsus with 5 denticles dorsal to cleaning organ, about three setae on proximal edge of cleaning organ; cleaning organ with row of short dorsal setae and 29 long setae ventrally; tarsus completely divided, apotele present and posterior sternites rounded; anterior sternite with 2 small setiferous tubercles on anterodorsal margin, spines with lower cusp larger than upper cusp, the lower-most the largest, external margin with 2 teeth on common base (Fig. 4), movable finger with 6 teeth, the 2 proximal teeth about equal in size, teeth 3 to 6 decreasing in size distally.

Legs (Figs. 8, 9): femora I, II, III and IV with small tubercles lacking setae. Right tibiae I with 25 segments, right tarsus I with 43 segments, left leg I is missing; tibiae II and III with 2 segments; tibiae IV with 5 segments; fourth segment with 1 trichobothrium, bt (0.48); fifth segment (distitibia) with 22 trichobothria (Fig. 8), bf (0.10), sbf (0.27), stf 1 (0.35), stf2 (0.75), bc (0.21), sbc1 (0.55), sbc2 (0.75), distitibia II and III with same number and arrangement of trichobothria (Fig. 8); tarsi II, III, IV with 4 segments, segment 2 with light transverse line, fourth segment without oblique slit; pulvilli present (Fig. 9).

Genitalia (Figs. 10–12): Male: Ventral surface with genital operculum cover the genitalia, the distal part with darker colour. Two limbs are present on ventral which is shorter than dorsal ones (Fig. 10), dorsal surface with two black striations (Fig. 11). Female: Gonopods is soft and tube-like, with setae on margin of genital operculum (Fig. 12).

Dimensions (mm), male holotype (female paratype MZB. Ambl.110): Body length (excluding chelicera) 13.00 (13.00). Carapace: median length 4.75 (4.50), width 7.00 (7.00); median eyes to anterior margin 0.15 (0.15), lateral eyes to lateral eyes 2.75 (2.40), to anterior margin 0.50 (0.50), lateral margin 0.50 (0.50). Pedipalps: trochanter length 1.75 (1.75), width 1.00 (1.00), femur length 5.00 (4.50), width 1.50 (1.50), patella length 5.50 (5.00), width 1.25 (1.25), tibia length 2.50 (2.00), width 1.25 (1.25), tarsus length 2.25 (2.40). Leg I: femur 13.75 (13.00), patella 1.00 (1.00), tibia 23.15 (22.50), tarsus 23.75 (25.00). Leg II: femur 8.25 (7.75), patella 1.25 (1.00), basistibia 7.50 (7.00), dististibia 3.50 (3.25), metatarsus and tarsus 2.75 (2.50). Leg III: femur 9.00 (8.75), patella 1.25 (1.00), basistibia 8.75 (8.25), dististibia 3.75 (3.75), metatarsus and tarsus 2.75 (2.50). Leg IV: femur 8.50 (8.00), patella 1.25 (1.00), basistibia 9.50 (9.00), dististibia 3.25 (3.00), metatarsus and tarsus 3.00 (2.75).

Etymology. – The specific epithet refers to the presence of this species on Sunda Strait. It is to be treated as a noun in apposition.

Remarks. – Stygophrynus sunda is most similar to S. dammermani but the new species is much smaller than the latter, can also be separated by the dentition of the external margin of the basal segment of the chelicera and the dentition of the movable cheliceral finger. The number of trichobothria and their arrangement is also quite different, as S. dammermani has 21 trichobothria (Fig. 16) and S. sunda has 23 (Fig. 8).

Natural history. – S. sunda is found live under stones in limestone forest in Ujung Kulon National Park. The habitat in Legundi Island is uncertain since no specific information on specimens examined. The distribution of this species is only known from Pulau Legundi located in the Sunda Strait and on the western ridge of Gunung Hondje near Cibuk Hotspring, Ujung Kulon in western Java (Fig. 21).

Stygophrynus dammermani Roewer, 1928
(Figs. 2, 13–20)

Stygophrynus dammermani Roewer 1928: 15–21, Figs. 1–6; Giltay 1931: 24–25; Mello-Leitao 1931: 54; Roewer 1932: Fig. 3; Werner 1935: Fig. 1; Dammerman 1948: 49; Dunn 1949: 11. Stygophrynus (Stygophrynus) dammermani = Harvey 2003: 10–11.

Type locality. – Goeha [= Cave Koeda, Buitenzorg [= Bogor].

of the pedipalp femur, whereas has five such spines on the dorsal margin. *S. cerberus* has two teeth on the external margin of the basal segment of the chelicera: *S. sunda* has three major spines on pedipalpal patella. *S. dammermani* differs from *S. moultoni* by the number of spines on pedipalpal tibia: *S. moultoni* have two spines on antero dorsal and one spine opposite the distal of dorsal one (see Dunn, 1949: Fig. 6; Weygoldt, 2002), whereas *S. dammermani* have four pedipalpal tibia spinelets on both dorsally and ventrally (Fig. 15). *S. dammermani* and *S. forsteri* have dorsal bicuspid tooth on internal margin of chelicera with the upper cusp larger than the lower-cusp (see Dunn, 1949: Fig. 5), and *S. dammermani* with the upper cusp smaller than the lower (Figs. 13–14).

Remarks. – We provided new illustrations for *S. dammermani* to facilitate the new diagnostic characters and to add new illustrations that not provided by Roewer (1928) such as male and female genitalia, distibia of leg IV and pedipalpal tibia. We make a correction on illustration of tarsus leg IV that Roewer (1928) showed five segments (see Roewer 1928: Fig. 6) that actually only four segments (Fig. 17). The left distibial segment on leg IV with 21 trichobothria (Fig. 16) and the tarsus of left leg IV with 4 segments, segment 2 with light transverse line, fourth segment without oblique slit; pulvilli present (Fig. 17). The male genitalia with black striation on dorsal view and some setae on genital operculum margin (Figs. 18–19). The female genitalia with gonopods tube-like (Fig. 20).

Natural history. – *S. dammermani* was first described from caves in the Bogor region of western Java (Roewer, 1928) and was later found in epigean habitats in the Krakatau Islands by Dammerman (1948). The species was also found to be eaten by monitor lizards (*Varanus salvator*) based on specimens found amongst stomach contents (Dammerman, 1948). This species is found in the Krakatau Islands, caves in western Java, Nusakambangan Island, caves in Gombong Selatan (Central Java) and a small karst area in Menoreh (Central Java) (Fig. 21). *S. dammermani* differs from males *S. brevispina* by the number of pedipalpal patella: males *S. brevispina* have two major spines pedipalpal patella with the P3 reduce to a tubercle during postembryonic growth (see Weygoldt, 2002: Fig.1.), external margin of chelicerae equipped with one blunt-tooth and *S. dammermani* has three major spines on pedipalpal patella. *S. dammermani* differs from *S. moultoni* by the number of spines on pedipalpal tibia: *S. moultoni* have two spines on antero dorsal and one spine opposite the distal of dorsal one (see Gravely, 1915, Pl. XXXI: 9) and *S. forsteri* have only one ventral pedipalpal tibia spinelet distal of the large ventral spine (See Dunn, 1949: Fig. 6; Weygoldt, 2002), whereas *S. dammermani* have four pedipalpal tibia spinelets on both dorsally and ventrally (Fig. 15). *S. dammermani* and *S. forsteri* have dorsal bicuspid tooth on internal margin of chelicera with the upper cusp larger than the lower-cusp (see Dunn, 1949: Fig. 5), and *S. dammermani* with the upper cusp smaller than the lower (Figs. 13–14).

Diagnosis. – Can be distinguished from *S. sunda* by the dentition of the external margin of the basal segment of the chelicera: *S. sunda* has two teeth on the external margin (Fig. 4), whereas *S. dammermani* has two teeth with dorsal teeth bicuspid (Table 1; Figs. 13–14). It also differs from *S. cerberus* by the presence of four spines on the dorsal margin of the pedipalpal femur, whereas *S. cerberus* has five such spines (see Gravely 1915; Roewer 1928). *S. dammermani* also differs from *S. longispina, S. berkeleyi* and *S. cavernicola* by the presence two small spines on the pedipalpal patella between P1 and the distal margin; *S. longispina, S. berkeleyi* and *S. cavernicola* bear 3 small spines (see Gravely, 1915;). *S. dammermani* differs from males *S. brevispina* by the number of pedipalpal patella: males *S. brevispina* have two major spines pedipalpal patella with the P3 reduce to a tubercle during postembryonic growth (see Weygoldt, 2002: Fig.1.), external margin of chelicerae equipped with one blunt-tooth and *S. dammermani* has three major spines on pedipalpal patella. *S. dammermani* differs from *S. moultoni* by the number of spines on pedipalpal tibia: *S. moultoni* have two spines on antero dorsal and one spine opposite the distal of dorsal one (see Gravely, 1915, Pl. XXXI: 9) and *S. forsteri* have only one ventral pedipalpal tibia spinelet distal of the large ventral spine (See Dunn, 1949: Fig. 6; Weygoldt, 2002), whereas *S. dammermani* have four pedipalpal tibia spinelets on both dorsally and ventrally (Fig. 15). *S. dammermani* and *S. forsteri* have dorsal bicuspid tooth on internal margin of chelicera with the upper cusp larger than the lower-cusp (see Dunn, 1949: Fig. 5), and *S. dammermani* with the upper cusp smaller than the lower (Figs. 13–14).

Remarks. – We provided new illustrations for *S. dammermani* to facilitate the new diagnostic characters and to add new illustrations that not provided by Roewer (1928) such as male and female genitalia, distibia of leg IV and pedipalpal tibia. We make a correction on illustration of tarsus leg IV that Roewer (1928) showed five segments (see Roewer 1928: Fig. 6) that actually only four segments (Fig. 17). The left distibial segment on leg IV with 21 trichobothria (Fig. 16) and the tarsus of left leg IV with 4 segments, segment 2 with light transverse line, fourth segment without oblique slit; pulvilli present (Fig. 17). The male genitalia with black striation on dorsal view and some setae on genital operculum margin (Figs. 18–19). The female genitalia with gonopods tube-like (Fig. 20).

Natural history. – *S. dammermani* was first described from caves in the Bogor region of western Java (Roewer, 1928) and was later found in epigean habitats in the Krakatau Islands by Dammerman (1948). The species was also found to be eaten by monitor lizards (*Varanus salvator*) based on specimens found amongst stomach contents (Dammerman, 1948). This species is found in the Krakatau Islands, caves in western Java, Nusakambangan Island, caves in Gombong Selatan (Central Java) and a small karst area in Menoreh (Central Java) (Fig. 21). *S. dammermani* differs from males *S. brevispina* by the number of pedipalpal patella: males *S. brevispina* have two major spines pedipalpal patella with the P3 reduce to a tubercle during postembryonic growth (see Weygoldt, 2002: Fig.1.), external margin of chelicerae equipped with one blunt-tooth and *S. dammermani* has three major spines on pedipalpal patella. *S. dammermani* differs from *S. moultoni* by the number of spines on pedipalpal tibia: *S. moultoni* have two spines on antero dorsal and one spine opposite the distal of dorsal one (see Gravely, 1915, Pl. XXXI: 9) and *S. forsteri* have only one ventral pedipalpal tibia spinelet distal of the large ventral spine (See Dunn, 1949: Fig. 6; Weygoldt, 2002), whereas *S. dammermani* have four pedipalpal tibia spinelets on both dorsally and ventrally (Fig. 15). *S. dammermani* and *S. forsteri* have dorsal bicuspid tooth on internal margin of chelicera with the upper cusp larger than the lower-cusp (see Dunn, 1949: Fig. 5), and *S. dammermani* with the upper cusp smaller than the lower (Figs. 13–14).

Remarks. – We provided new illustrations for *S. dammermani* to facilitate the new diagnostic characters and to add new illustrations that not provided by Roewer (1928) such as male and female genitalia, distibia of leg IV and pedipalpal tibia. We make a correction on illustration of tarsus leg IV that Roewer (1928) showed five segments (see Roewer 1928: Fig. 6) that actually only four segments (Fig. 17). The left distibial segment on leg IV with 21 trichobothria (Fig. 16) and the tarsus of left leg IV with 4 segments, segment 2 with light transverse line, fourth segment without oblique slit; pulvilli present (Fig. 17). The male genitalia with black striation on dorsal view and some setae on genital operculum margin (Figs. 18–19). The female genitalia with gonopods tube-like (Fig. 20).
has not been found in eastern Java and may be restricted to the western and central portions of the island. Lives in caves and also found on epigean habitat in Krakatau Islands.

DISCUSSION

Specimens of *Stygophrynus* were first reported from Java by Gravely (1915) and Roewer (1928), and additional specimens were recorded in the Sunda Strait by Dammerman (1948) and Quintero (1986). *Stygophrynus moultoni* Gravely, 1915 was reported on Sebesi Island by Quintero (1986) who provided an image of the pedipalpal tibia (see Quintero 1986, Fig. 8). We feel that this identification is likely to be incorrect. As the pedipalpal tibia does not resemble the morphology of *S. moultoni* which has been found only from Banjaran Klingkang (see Gravely, 1915; Harvey, 2003) and in caves in the Sangkulirang karst, Kalimantan (unpublished data). The number of spines on dorsal pedipalpal tibia of *S. moultoni* has two spines with distal spine longer than proximal one and one spine on ventral part (Gravely, 1915) in contrast in *S. sunda* has one spine and one subsidiary basal spine on dorsal pedipalpal tibia and one large sub-medial spine on ventral with four pedipalpal tibia spinelets (Fig. 7).

We have found that *S. dammermani* occurs on the islands of the Krakatau group such as Sertung Island and Rakata Island, as well as in caves in western and central Java (Fig. 21). The fauna of Krakatau was thought to have been extinguished by the cataclysmic eruption of 1883 and the modern fauna derived by colonization from elsewhere (e.g. Dammerman 1922, 1948; Thornton & New, 1988; Thornton & Rosengren, 1988; Gathorne-Hardy et al., 2000; Thornton et al., 2002; Zabka & Nentwig, 2002; Yukawa et al., 2000). The Krakatau butterflies are thought to have been derived from Java rather than Sumatra even though two islands providing stepping-stones exist between Krakatau and Sumatra (Yakawa et al., 2000). Zabka & Nentwig (2002) suggested that Sumatra and Java were the most important faunistic sources for the Krakatau spider fauna. The discovery of the Javanese species *S. dammermani* on Krakatau suggests that this species is derived from Java.

In contrast, *S. sunda* is currently known from Ujung Kulon and Pulau Legundi in Lampung Bay of southern Sumatra and absent in the Krakatau group (Fig. 21). This species is also apparently absent from the east of Hondje Ridge to eastern Java, which may be related to the physiography of western Java, especially Ujung Kulon and Hondje Ridge. Bemmelen (1970) stated that the western-most regions of Java have, in some respects, more affinities with the Sunda Strait and Sumatra than with Java. During the Pliocene, Hondje Ridge and Ujung Kulon was separated by the sea from Java and formed the south-eastern end of the Barisan Range of Sumatra. Further study on the distribution of this species is required, especially on the other islands in the Sunda Strait (Sebesi, Sebuku and Panjang) and also Sumatra, to fully document the distribution of *S. sunda*.

ACKNOWLEDGEMENTS

We thank Dr. Rosichon Ubaidillah and Dr. Daisy Wowor for their suggestions on an early version of the manuscript. M.

Fig. 21. Distributions of *Stygophrynus* species in Java and the Sunda Strait. (Note: circles = *Stygophrynus dammermani*, triangles = *Stygophrynus sunda*).
S. Harvey’s field work to Krakatau in 1984 was very kindly facilitated by Ian Thornton (LaTrobe University). The recent collection of specimens was based on fieldwork in West Java supported by Nagao NEF (Japan) and Rufford Small Grants (Grant No. 40.11.06) (UK) through the project “Cave Fauna of Java” for CR. Thanks to Prof. Dr. Peter Ng (NUS) to make possible to loan the specimens of S. berkeleyi. We also thank Dr. Louis Deharveng, Prof. Dr. Peter Weygoldt, Ronald M. Clouse, Pungki Lupiyamindyah and the anonymous reviewer for their valuable comments on the manuscript.

LITERATURE CITED

Kraepelin, K., 1899. Scorpiones et Pedipalpi. Tierreich 8: i–xviii, 1–256

Mello-Leitão C., 1931. Pedipalpos dos Brasil e algumas notas sobre a ordem. Archivos do Museo Nacional 33: 7–72

Roewer, C. F., 1928. Ein javanischer charontine. Treubia, 10: 15–21

